八年级因式分解练习题(2018版含答案)基础巩固
一、选择题
1.下列各式从左到右的变形中,是因式分解的为(
)
A.x(a-b)=ax-bx
B.x2-1+y2=(x-1)(x+1)+y2
C.x2-1=(x+1)(x-1)
D.ax+bx+c=x(a+b)+c
2.把x3-xy2分解因式,正确的结果是(
)
A.(x+xy)(x-xy)
B.x(x2-y2)
C.x(x-y)2
D.x(x-y)(x+y)
3.下列多项式能进行因式分解的是(
)
A.x2-y
B.x2+1
C.x2+y+y2
D.x2-4x+4
4.把多项式m2(a-2)+m(2-a)分解因式等于(
)
A.(a-2)(m2+m)
B.(a-2)(m2-m)
C.m(a-2)(m-1)
D.m(a-2)(m+1)
5.下列各式中不能用平方差公式分解的是(
)
A.-a2+b2
B.-x2-y2
C.49x2y2-z2
D.16m4-25n2
6.下列各式中能用完全平方公式分解的是(
)
①x2-4x+4;②6x2+3x+1;③4x2-4x+1;④x2+4xy+2y2;⑤9x2-20xy+16y2.A.①②
B.①③
C.②③
D.①⑤
7.把下列各式分解因式:
(1)9x3y2-12x2y2z+3x2y2;
(2)2a(x+1)2-2ax;
(3)16x2-9y2;
(4)(x+2)(x+3)+x2-4.能力提升
8.若m-n=-6,mn=7,则mn2-m2n的值是(
)
A.-13
B.13
C.42
D.-42
9.若x2+mx-15=(x+3)(x+n),则m的值为(
)
A.-5
B.5
C.-2
D.2
10.若x2-ax-1可以分解为(x-2)(x+b),则a+b的值为(
)
A.-1
B.1
C.-2
D.2
11.若16x2+mxy+9y2是一个完全平方式,那么m的值是(
)
A.12
B.24
C.±12
D.±24
12.分解因式(x-3)(x-5)+1的结果是(
)
A.x2-8x+16
B.(x-4)2
C.(x+4)2
D.(x-7)(x-3)
13.分解因式3x2-3y4的结果是(
)
A.3(x+y2)(x-y2)
B.3(x+y2)(x+y)(x-y)
C.3(x-y2)2
D.3(x-y)2(x+y)2
14.若a+b=-1,则3a2+3b2+6ab的值是(
)
A.-1
B.1
C.3
D.-3
15.-6xn-3x2n分解因式正确的是(
)
A.3(-2xn-x2n)
B.-3xn(2+xn)
C.-3(2xn+x2n)
D.-3xn(xn+2)
16.把下列各式分解因式:
(1)x(x-5)2+x(-5+x)(x+5);
(2)(a+2b)2-a2-2ab;
(3)-2(m-n)2+32;
(4)-x3+2x2-x;
(5)4a(b-a)-b2;
(6)2x3y+8x2y2+8xy3.17.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状.
参考答案
1.C
2.D
3.D
4.C
5.B
6.B
7.解:(1)原式=3x2y2(3x-4z+1);
(2)原式=2a(x2+x+1).
(3)原式=(4x+3y)(4x-3y);
(4)原式=(x+2)(x+3)+(x+2)·(x-2)=(x+2)(x+3+x-2)=(x+2)(2x+1).
8.C
9.C
10.D
11.D
12.B
13.A
14.C
15.B
16.解:(1)原式=x(x-5)2+x(x-5)(x+5)
=x(x-5)[(x-5)+(x+5)]
=2x2(x-5);
(2)原式=a2+4ab+4b2-a2-2ab
=2ab+4b2
=2b(a+2b);
(3)原式=-2[(m-n)2-16]
=-2(m-n+4)(m-n-4);
(4)原式=-x(x2-2x+1)=-x(x-1)2;
(5)原式=4ab-4a2-b2
=-(4a2-4ab+b2)=-(2a-b)2;
(6)原式=2xy(x2+4xy+4y2)
=2xy(x+2y)2.17.解:因为a2+2b2+c2-2b(a+c)=0,所以a2-2ab+b2+b2-2bc+c2=0.所以(a2-2ab+b2)+(b2-2bc+c2)=0.所以(a-b)2+(b-c)2=0.又因为(a-b)2≥0,(b-c)2≥0,所以a-b=0,b-c=0,即a=b=c.所以△ABC是等边三角形.
6